
IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

Project Number: IST-2001-32603

Project Title: 6NET

CEC Deliverable Number: 32603/WWU(JOIN)/DS/3.2.3v3/A1

Contractual Date of Delivery to the CEC: 1 June 2005

Actual Date of Delivery to the CEC: 14 June 2004

Title of Deliverable: DHCPv6 implementation and test report version 3

Work package contributing to Deliverable: WP3

Type of Deliverable*: RP

Deliverable Security Class**: PU

Editor: André Stolze

Contributors: Bartosz Belter, Michał Balcerkiewicz, Ralph Droms,
Francis Dupont, Bartosz Gajda, József Kadlecsik, Marcin
Kamiński, János Mohácsi, Blazej Pietrzak, Stig Venaas,
Christian Schild, André Stolze

Reviewers: João Nuno Ferreira

* Type: P - Prototype, R - Report, D - Demonstrator, O - Other

** Security Class: PU- Public, PP – Restricted to other programme participants (including the Commission), RE – Restricted to a group defined by
the consortium (including the Commission), CO – Confidential, only for members of the consortium (including the
Commission)

Abstract: This document describes the developments in DHCP6 implementations since the last
version of this document. There are several RFC concerning different types of DHCPv6 servers.
Only some of them could be considered complete and working for today. As DHCPv6 is a vital
part for easy administration these tools urgently need further development.

Keywords: stateful and stateless DHCP, IPv6, autoconfiguration, testing, DNS, network
management, prefix delegation, DHCPv6 relay agent

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 2

 Table of Contents

1 INTRODUCTION .. 4
1.1 USING DHCPV6 TOGETHER WITH STATELESS AUTOCONFIGURATION .. 4
1.2 USING DHCPV6 INSTEAD OF STATELESS AUTOCONFIGURATION.. 4

2 OVERVIEW OF THE STANDARDISATION OF DHCPV6 .. 4

3 OVERVIEW OF THE DHCPV6 STANDARDS .. 5
3.1 BASIC "STATEFUL" OPERATION (RFC 3315) ... 5
3.2 ADDITIONAL DHCPV6 OPTIONS ... 6

3.2.1 SIP server configuration option for DHCPv6 (RFC3319).. 6
3.2.2 IPv6 prefix options for DHCPv6 (RFC 3633) .. 6
3.2.3 DNS configuration options for DHCPv6 (RFC 3646).. 7
3.2.4 NIS/NIS+ configuration options for DHCPv6 (RFC3898) .. 7
3.2.5 SNTP server option for DHCPv6 .. 7
3.2.6 Lifetime option for DHCPv6 ... 7
3.2.7 Client FQDN option for DHCPv6... 7
3.2.8 Other DHCPv6 options.. 7

3.3 STATELESS OPERATION (RFC 3736) ... 8
3.4 DIFFERENCES BETWEEN DHCP FOR IPV4 AND IPV6 .. 10

4 DHCPV6 IMPLEMENTATIONS OVERVIEW .. 10
4.1 STATEFUL DHCPV6 IMPLEMENTATIONS .. 10

4.1.1 NEC Europe Ltd... 10
4.1.2 Sourceforge.net .. 11
4.1.3 Dibbler.. 11
4.1.4 HP-UX.. 11

4.2 STATELESS DHCPV6 IMPLEMENTATIONS ... 11
4.2.1 Kame .. 11
4.2.2 Cisco... 12
4.2.3 Juniper .. 12
4.2.4 Hitachi .. 12

5 TEST REPORT OF THE DHCPV6 IMPLEMENTATIONS .. 12
5.1 NEC EUROPE LTD. .. 12

5.1.1 Description ... 12
5.1.2 Documentation ... 12
5.1.3 Functionality .. 12
5.1.4 Tests ... 13

5.2 SOURCEFORGE.NET (VERSION 0.10).. 14
5.2.1 Description (from the software itself) ... 14
5.2.2 Documentation ... 14
5.2.3 Functionality .. 14
5.2.4 Tests ... 15

5.3 DIBBLER .. 16
5.3.1 Description ... 16
5.3.2 Documentation ... 16
5.3.3 Functionality .. 16
5.3.4 Test of stateful operation ... 18
5.3.5 Test of stateless operation.. 19

5.4 HP-UX... 36
5.5 KAME... 36

5.5.1 Description ... 36
5.5.2 Documentation ... 36
5.5.3 Functionality .. 36
5.5.4 Test of stateless operation.. 37

5.6 CISCO... 42
5.6.1 Relay... 42

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 3

5.7 JUNIPER.. 42
5.8 HITACHI ... 42
5.9 INTEROPERABILITY.. 42

5.9.1 Example interoperability test ... 42
5.9.2 Interoperability matrix for stateful operation .. 44

6 CONCLUSION ... 46

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 4

1 Introduction
After many years of work, DHCPv6 was published as RFC3315 [RFC3315]. Despite the existence
of stateless autoconfiguration for IPv6 (RFC 2462 [RFC2462]), there is still a need for DHCP. On
the one hand, it complements stateless autoconfiguration where it can supply hosts with DNS, NTP
and other configuration data. On the other hand, a network administrator might want to gain more
control over the IP addresses used than is possible with stateless address configuration. A stateful
DHCPv6 implementation as of RFC 3315 offers both. In addition, the IETF DHC working group
[DHC] published a more lightweight respective "stateless" DHCPv6 version (RFC 3736
[RFC3736]), which serves only as a source for configuration options that are not already delivered
to the host with stateless autoconfiguration.

1.1 Using DHCPv6 together with stateless autoconfiguration
A typical host will need to configure at least IP addresses and a recursive DNS server address in
order to be used. The major problem of the current stateless autoconfiguration is that it does not
supply a DNS server address. The DNS server address might be a bit more stable, but it's still a
problem to find and configure the correct address. People have suggested various techniques for
configuring this, DHCP being but one of them (the others included multicasting, anycasting and
additional autoconfiguration options). DHCP is considered as a good solution, since a client might
also need other configuration data like domain search path, NTP servers etc. Some have claimed
that DHCP is too complex, but a DHCP server in an environment with stateless autoconfiguration
does not need to support IP address delegations, and does not need any per-client state. RFC 3736
offers a solution for this. There are more other features that could be omitted in a DHCP server if
necessary. Also note that even if the client has an address from stateless autoconfiguration, it might
wish to request additional addresses from DHCP, some possible reasons are described in the next
section.

1.2 Using DHCPv6 instead of stateless autoconfiguration
In this case we not only wish to configure DNS etc. as described in previous section, but also IP
addresses. There are several reasons one might want to do this. Stateless autoconfiguration as
described in RFC 2462 creates addresses based on interface identifiers that are typically EUI-64
identifiers. On e.g. Ethernet this will be created from the MAC address on the host’s Ethernet
interface. This means that the IPv6 address will depend on the physical Ethernet interface. One
might wish for a host to have a stable address independent of which Ethernet interface is used
though, and there are also some privacy concerns. It can also be a pain to have meaningful PTR
records in the DNS for reverse lookups. DHCP can help to fulfil all of these requirements.

2 Overview of the standardisation of DHCPv6
Several years ago, the IETF took on the initiative to develop a version of DHCP for IPv6
(DHCPv6). The specification became a Dynamic Host Configuration working group (DHC WG)
work item and has been under development in that working group since the initiative was started.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 5

There are a couple of reasons for the long development and approval process for DHCPv6. While
DHCPv6 is similar to DHCPv4 [RFC2131, RFC2132] in its goals and scope, all of the details of the
protocol operation are different. For example, because the configuration of an interface with
multiple IPv6 addresses is a fundamental feature of IPv6, DHCPv6 can manage the assignment of
multiple addresses, potentially assigned over a period of time. In contrast, DHCPv4 can only assign
a single address to an interface. DHCPv6 also addresses several deficiencies in the DHCPv4
protocol, including the operation of relay agents and security.
Another reason for the long development period for DHCPv6 is that there has been some debate in
the IETF about the utility and role for DHCPv6, so the specification has been tracking a moving
target.
There have been many significant changes to the DHCPv6 specification in the revisions of the
DHCPv6 Internet-Draft. Implementations of earlier drafts will not interoperate with the final
specification as documented in draft-ietf-dhc-dhcpv6-28.txt. The last major changes occurred in
revisions 24 and 25, so implementations of draft-ietf-dhc-dhcpv6-2[4-7].txt do not require extensive
revision to become compliant with the final version of the specification.
One question about the use of DHCPv6 is the specification of stateless address autoconfiguration.
For IPv4, the primary use of DHCP is the assignment of IP addresses to hosts. A host can use
stateless address autoconfiguration to determine IPv6 addresses independent of any server-based
address assignment mechanism. However, a host that has used stateless address autoconfiguration
may still require additional configuration information, such as a list of addresses for DNS servers.
"Stateless DHCPv6", which is described in more detail in section 3.3, is used to provide these
additional configuration parameters.
DHCP for IPv6 was published as an Internet Proposed Standard in June 2003 in RFC 3315
"Dynamic Host Configuration Protocol for IPv6 (DHCPv6)" [RFC3315]. It describes the complete
"stateful" DHCPv6 implementation. Derived from this RFC and from several subsequent RFCs
describing DHCPv6 options an additional light-weight specification of a "stateless" DHCPv6
version was published as an Internet Proposed Standard in April 2004 in RFC 3736 "Stateless
Dynamic Host Configuration Protocol (DHCP) Service for IPv6" [RFC3736].

3 Overview of the DHCPv6 standards
3.1 Basic "stateful" operation (RFC 3315)
The architecture and message exchanges in DHCPv6 are similar to DHCPv4. A DHCPv6 client
initiates a DHCPv6 transaction by first locating a DHCPv6 server, and then making a request for
configuration information from that server. As in DHCPv4, an IPv6 address is assigned to a host
with a lease, and the host can initiate a transaction with the DHCPv6 server to extend the lease on
an address.
A DHCPv6 client uses a link-local address when exchanging messages with a DHCPv6 server. To
avoid the requirement that a DHCPv6 server has to be attached to every link, DHCPv6 relay agents
forward DHCPv6 messages between hosts and off-link servers. The mechanism through which
relay agents forward DHCPv6 messages allows for the use of multiple relay agents between a host
and a server. Relay agent options, through which a relay agent can provide additional information to
the DHCPv6 server, are included as a design feature in the base DHCPv6 specification.
The address assignment mechanism in DHCPv6 allows for the assignment of multiple addresses to
an interface, and allows for the dynamic assignment of additional addresses over time. Addresses
are assigned to a host with a lease, a preferred lifetime and a valid lifetime. The mechanism can
support renumbering through the assignment of new addresses whose lifetimes overlap existing

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 6

addresses to allow for graceful transition. Addresses are grouped together for management into an
"identity association", which the host and server exchange for address assignment. DHCPv6 can be
used for assignment of temporary addresses [RFC3041].
Each DHCPv6 host has a "DHCP Unique Identifier" (DUID), which remains unchanged throughout
the lifetime of the host. Servers use this DUID to identify hosts reliably even if they roam between
links.
Security is included in the DHCPv6 base specification. The security mechanism uses a framework
similar to the security mechanism for DHCPv4 defined in RFC 3118 [RFC3118]. In addition,
security for messages exchanged between relay agents and servers is provided by the use of IPsec.
A DHCPv6 server can trigger a message exchange with a host through the Reconfigure message.
Security is included for the Reconfigure message to prevent intruder attacks against DHCPv6
clients.
DHCPv6 uses a two-message exchange between a client and a server. To obtain configuration
information without address assignment through stateless DHCPv6, the host sends an Information-
request message. The DHCPv6 server responds with the requested configuration information. The
DHCPv6 server can be configured with host-specific configuration, to allow for customized
configuration of different classes of hosts. As described in section 3.3, stateless DHCPv6 service
requires only a subset of the mechanism and messages of the full DHCPv6 protocol, and is easier to
implement and deploy.

3.2 Additional DHCPv6 Options
DHCPv6 uses "options" in the variable format section of a DHCPv6 message. Several options,
necessary for the operation of the protocol, are defined in section 22 of the DHCPv6 specification.
Transferring information as separate options to the clients gives the opportunity to add more options
for additional information at a later point of time. Further options are already published as proposed
standard RFCs, while others are still in development with different levels of maturity. They are
described in short in the remainder of this section.

3.2.1 SIP server configuration option for DHCPv6 (RFC3319)

RFC 3319 ("Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation
Protocol (SIP) Servers") [RFC3319] defines a DHCPv6 option that contains a list of domain names
or IPv6 addresses that can be mapped to one or more Session Initiation Protocol (SIP) outbound
proxy servers. It was published as a Proposed Standard in July 2003.

3.2.2 IPv6 prefix options for DHCPv6 (RFC 3633)

The "Prefix Option" is used for prefix delegation in DHCPv6. An ISP uses prefix delegation to
delegate a prefix or prefixes to a customer. To use prefix delegation, the CPE initiates a DHCPv6
transaction with the ISP edge router. The ISP router selects the prefix or prefixes to be assigned to
the customer, through the ISP's policy or customer provisioning process, and returns those prefixes
to the CPE. The prefixes are then available for use in the customer's network. For example, the
customer may be assigned a /48 prefix, which is delegated to the CPE through DHCPv6 prefix
delegation. The CPE can then assign /64 prefixes from the delegated /48 prefix to links in the
customer's network.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 7

This option was published as Proposed Standard RFC 3633 "IPv6 Prefix Options for Dynamic Host
Configuration Protocol (DHCP) version 6" [RFC3633] in December 2003.

3.2.3 DNS configuration options for DHCPv6 (RFC 3646)

"DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)" was
published as Proposed Standard RFC 3646 [RFC3646] in December 2003. It defines two DNS
configuration options. The first passes the IP addresses of a list of DNS servers to a host. The
second option passes a list of domains to be used as a domain search list by the host.

3.2.4 NIS/NIS+ configuration options for DHCPv6 (RFC3898)

A third kind of DHCPv6 option that is already published as a Proposed Standard is described in
RFC 3898 "Network Information Service (NIS) Configuration Options for Dynamic Host
Configuration Protocol for IPv6 (DHCPv6)" [RFC3898] published in October 2004. It defines four
different options that convey a list of NIS/NIS+ servers and NIS/NIS+ domain names to a client.

3.2.5 SNTP server option for DHCPv6

The draft "Simple Network Time Protocol Configuration Option for DHCPv6" (<draft-ietf-dhc-
dhcpv6-opt-sntp-00> [SNTP]) describes a new DHCPv6 option for passing a list of SNTP server
addresses to a client. It is currently still under IESG review and will hopefully be published as a
Proposed Standard RFC.

3.2.6 Lifetime option for DHCPv6

The draft "Information Refresh Time Option for DHCPv6" defines an upper bound for how long a
client should wait before refreshing information retrieved from DHCPv6. It is under discussion in
IETF’s DHC working group and is currently published with draft status as <draft-ietf-dhc-lifetime>
[LIFETIME].

3.2.7 Client FQDN option for DHCPv6

Draft <draft-ietf-dhc-dhcpv6-fqdn> [CLIENTFQDN] specifies a "DHCPv6 Client FQDN Option"
and is under discussion in the DHC working group. This option can be used to exchange
information about a DHCPv6 client's fully qualified domain name and about responsibility for
updating DNS resource records (RRs) related to the client's address assignments.

3.2.8 Other DHCPv6 options

There were several other DHCPv6 options discussed in the past in the DHC WG. Several of them
were expired in the last year, but might get picked up again at a later point of time. A short list of
what was available:

• DSTM Options for DHCPv6 (<draft-ietf-dhc-dhcpv6-opt-dstm-02>) [DSTM]

• DSTM Ports Option for DHCPv6 (<draft-ietf-dhc-dhcpv6-opt-dstm-ports>) [DSTMPORT]

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 8

• Client Preferred Prefix option for DHCPv6 (<draft-ietf-dhc-dhcpv6-opt-cliprefprefix>)
[CLIPREF]

• Load Balancing for DHCPv6 (<draft-ietf-dhc-dhcpv6-loadb>)[LOADB]

3.3 Stateless operation (RFC 3736)
The DHCPv6 service of providing configuration information without address assignment is called
"stateless DHCPv6" ([RC3736]), because the DHCPv6 server need not maintain any dynamic state
about individual clients while providing the service. Stateless DHCPv6 requires only a subset of the
DHCPv6 protocol [RFC3315] and is significantly easier to implement and deploy. It is anticipated
that stateless DHCPv6 will be the primary way in which DHCPv6 is used in IPv6 networks.
Stateless DHCPv6 may be provided through centralized DHCPv6 servers, similar to the deployment
of DHCPv4 service. Because stateless DHCPv6 is a relatively simple protocol, it may be provided
by a PE router, using, for example, DNS configuration information configured by the PE
administrator or obtained through DHCPv6 form the ISP. Stateless DHCPv6 service may also be
provided by DNS servers, which would respond directly to hosts with DNS configuration
information.
Nodes which have obtained IPv6 addresses through some other mechanism, such as stateless
address autoconfiguration [RFC2462] or manual configuration, can use stateless DHCP to obtain
other configuration information such as a list of DNS recursive name servers or SIP servers. A
stateless DHCP server provides only configuration information to nodes and does not perform any
address assignment.
Clients and servers implement Information-Request and Reply messages for stateless DHCP
service. Information-Request message is sent by a DHCP client to a server to request configuration
parameters. Reply message is sent by DHCP server to the client and contains configuration
parameters. Additionally, servers and relay agents implement Relay-forward and Relay-reply
messages. Relay-forward is sent by a DHCP relay agent to carry the client message to a server.
Relay-reply message is sent by a DHCP server to carry a response message to the relay agent
[RFC3736].
The basic RFC [RFC3315] and subsequent RFCs define various options. For a stateless operation it
is required to implement a specific set of them:

Clients and servers implement the options shown in table 1 for stateless DHCP service.

Table 1. Options implemented by stateless clients and servers

Option Request specifies the configuration information that the client is requesting from
the server

Status Code used to indicate completion status or other status information.
Server Identifier used to identify the server responding to a client request.

Servers and relay agents implement the options shown in table 2 for stateless DHCP service.

Table 2. Options implemented by servers and relay agents

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 9

Client message sent by a DHCP relay agent in a Relay-forward message to carry the client
message to a server

Server message sent by a DHCP server in a Relay-reply message to carry a response message to
the relay agent

Interface-ID sent by the DHCP relay agent and returned by the server to identify the interface
to be used when forwarding a message to the client

Clients and servers implement the options shown in table 3 to pass configuration information to
clients.

Table 3. Options implemented by clients and servers to pass configuration information to clients.

DNS Recursive
Name Servers

specifies the DNS recursive name servers the client uses for name resolution

DNS search list specifies the domain names to be searched during name resolution
SIP Servers specifies the SIP servers the client uses to obtain a list of domain names of IPv6

addresses that can be mapped to one or more SIP outbound proxy servers

These additional options are not part of the basic RFC [RFC3315], but are published as separate
RFCs. When more additional options are published, they might get added to this list.
Clients and servers may implement the options shown in table 4 for stateless DHCP service.

Table 4. Options that may be implemented by clients and servers.

Preference sent by a DHCP server to indicate the preference level for the server.
Elapsed time sent by a DHCP client to indicate the time since the client began the DHCP

configuration process.
User Class sent by a DHCP client to give additional information to the server for selecting

configuration parameters for the client
Vendor Class sent by a DHCP client to give additional information about the client vendor and

hardware to the server for selecting configuration parameters for the client.
Vendor-specific
Information

used to pass information to clients in options defined by vendors.

Client Identifier sent by a DHCP client to identify itself; clients are not required to send this
option; servers send the option back if included in a message from a client.

Authentication used to provide authentication of DHCP messages.

DHCP servers that are intended only for stateless configuration may receive messages from clients
that are performing stateful address configuration. A DHCP server that is only able to provide
stateless configuration information through an Information-request/Reply message exchange
discards any messages other than Information-Request or Relay-forward it receives, and the server

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 10

does not participate in any stateful address configuration message exchanges. If there are other
DHCP servers that are configured to provide stateful address assignment, one of those servers will
provide the address assignment [RFC3736].

3.4 Differences between DHCP for IPv4 and IPv6
There are many differences, since DHCP IPv6 is a completely new protocol. We only list some of
the more obvious differences here.

• Hosts always have a link local address that can be used in requests (in IPv4 0.0.0.0 is used
as source address)

• Uses relay agents to forward requests between client and server

• Uses special multicast addresses for relay agents and servers

• No compatibility with BOOTP, since no BOOTP support on IPv6.

• Simplified two-message exchange for simple configuration cases

• A client can request multiple IPv6 addresses

• Client can send multiple unrelated requests to the same or different servers

• There is a reconfigure message where servers can tell clients to reconfigure. This feature is
optional.

4 DHCPv6 Implementations overview
There are two different types of DHCPv6 implementations, stateful and stateless, based either on
RFC 3315 or RFC 3736. While stateful DHCPv6 implementations are supposed to include the
whole DHCPv6 feature set as of RFC 3315 (including address delegation to the client), stateless
DHCP implementations only convey additional configuration parameters to the client. As the name
suggests, stateless DHCPv6 servers do not need to keep a state to client. They are easier to
implement and can even be placed on a providers edge router.
In addition to the list below, there are several other implementations that are nowadays outdated.
They are based on older draft versions of DHCPv6 and as there were significant changes in late
versions of that draft they are not compliant to the final RFC. They were tested in the beginning of
the 6NET project early 2003. Test results can be found in the first version of this deliverable
(D3.2.3v1) [D3.2.3v1].

4.1 Stateful DHCPv6 implementations

4.1.1 NEC Europe Ltd.

NEC’s product implements a DHCPv6 client, a stateful server and a relay. While the client and
server are not freely available, the DHCPv6 relay is published under the GNU public licence. It
implements all options as of RFC 3315 and offers the means to statefully assign addresses to the
clients. Additionally it implements the following options:

• IPv6 prefix option

• DNS configuration option

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 11

• SIP server configuration option

• Lifetime option

• Time configuration option
NEC offered an exclusive cooperation to some 6NET partners to test and enhance their
implementation. This cooperation is under NDA terms and not all of the results can be published
here.

4.1.2 Sourceforge.net

This implementation is an open source project under the BSD license available for Linux hosts. It
contains both a client and server but no relaying functionality yet.

4.1.3 Dibbler

Dibbler is a portable DHCPv6 implementation. Currently Linux 2.4/2.6 and WindowsXP ports are
being actively developed. In the not so distant future, BSD version will follow.
Dibbler offers both, a DHCPv6 server and a client [Dibbler]. It was released under GPL licence.
The core of Dibbler was written in C++ programming language and as the author claims is fully
portable. The rest of code is system dependent and was written in plain C. Currently Dibbler
compiles with GNU Compiler Collection (GCC) and also using Visual Studio environment.

4.1.4 HP-UX

HP has implemented an advanced DHCPv6 client, server and relay. It is only available for HP-UX
and is available for their latest HP-UX (11iv1) operating system. It implements the full set of
functionality as of RFC 3315 and uses the following additional options:

• SIP server configuration option

• DNS configuration option

• NIS/NIS+ configuration option

4.2 Stateless DHCPv6 implementations

4.2.1 Kame

Kame-dhcp6 is an open-source implementation of Dynamic Host Configuration Protocol for IPv6
(DHCPv6) developed by the KAME project [KAME-DHCPv6].
The KAME implementation claims to conform to RFC 3315 but does not implement address
delegation, which makes it more a stateless DHCPv6 like specified in RFC 3736. The KAME
developers give the following statement in this issue:

‘Note that the current implementation does not support IPv6 address allocation by DHCPv6,
and there is no plan to implement that feature at the moment. The main purpose of this
implementation is to provide a way of IPv6 prefix delegation (RFC3633) and to provide
some "stateless" configuration information such as DNS recursive server addresses.‘

The KAME implementation offers client, server and relay. It uses the following additional options:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 12

• SIP server configuration option

• IPv6 prefix option

• DNS configuration option

4.2.2 Cisco

The Cisco DHCPv6 implementation, which was introduced in Cisco IOS Software Release
12.3(4)T, runs on Cisco routers. Both client and server are specifically intended to provide the
prefix delegation feature and therefore do not implement the entire DHCPv6 protocol. At present,
Cisco's DHCPv6 implements prefix delegation, the rapid-commit mechanism and stateless DHCPv6
and all basic options as of RFC 3315.

4.2.3 Juniper

Juniper introduced DHCPv6 functionality in their router operating system JunOS version 5.3. Only
the DHCPv6 server is available. It uses the prefix delegation option and the DNS configuration
option.

4.2.4 Hitachi

Hitachi has implemented a DHCPv6 server for its GR2000 platform. It conveys the following
options to a client:

• IPv6 prefix delegation

• DNS configuration option

• Time configuration option

5 Test report of the DHCPv6 implementations
5.1 NEC Europe Ltd.

5.1.1 Description

The DHCPv6 implementation of the NEC Europe Ltd. is a pre-production release given to the JOIN
team for testing purposes under a NDA. So the description in this document will be kept more or
less abstract.

5.1.2 Documentation

The testing version JOIN got for testing purposes includes a .pdf file of documentation for each of
the three programs. For the relay there is also a man page (dhcpv6c(8)) installable.

5.1.3 Functionality

In the server and client the following RFCs/drafts are fully implemented:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 13

• Dynamic Host Configuration Protocol for IPv6 (DHCPv6) (RFC 3315)

• IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) version 6
(RFC3633)

• DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
(RFC3646)

• Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol
(SIP) Servers (SIP)(RFC3319)

• draft-ietf-dhc-lifetime-00.txt

• draft-ietf-dhc-dhcpv6-opt-timeconfig-03.txt

• draft-ietf-dhc-dhcpv6-stateless-04.txt
For the relay agent there was only RFC 3315 to keep in mind.

5.1.4 Tests

The software supports both prefix delegation and address assignment, but tests has been done only
only for address assignment.

5.1.4.1 Environment
All tests were executed on Debian Linux (testing) with 2.6.10 kernels.

5.1.4.2 Compiling the code / Installing the software
The package comes without source code, so there was nothing to compile. All there is to be done is
to extract the .tgz and do a ./configure in one of the directories SERVER, CLIENT or RELAY-
AGENT.

5.1.4.3 Test 1
In the first test the aim was to configure hosts on the same link as the server was on. In this case
there was nothing to do except for adjusting the address range in the server’s configuration file. In
this scenario clients and server worked as it was expected.

5.1.4.4 Test 2
In the second test the scenario was changed in a way that the server was on another link than the
clients. After some lesser configuration problems this scenario worked well.

5.1.4.5 Conclusions
Although the software is described as “not yet ready to sell” by NEC it was very nice to configure
and run. Nevertheless the software worked, as it had been expected.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 14

5.2 Sourceforge.net (Version 0.10)

5.2.1 Description (from the software itself)

This implementation supports IPv6 address assignment to the clients. It also has the support for
prefix delegation, DNS server updates but those features are not validated yet.

The Linux implementation is based upon KAME's DHCPv6 implementation on BSD, which lacked
the support for dynamic address assignment feature, now supported in Linux.

5.2.2 Documentation

The authors provide documentation as man pages.

5.2.3 Functionality

The authors of the software provide the following feature list:

A. Validated Features

• IPv6 address Assignment & Prefix Delegation
• Server configuration file support for both static and dynamic assignments.
• Server lease file support for saving all the client's IPv6 address binding info.
• Client IPv6 address assignment and temporary IPv6 address assignment support on the

same link.
• Supported Options: Rapid commit, Server Preference, Information Request, Unicast,
• Elapsed Time, ClientID, ServerID, IA_NA, IA_TA, IA_ADDR, IA_PD, Status support.
• Solicit/Request/Advertise/Reply/Information-request

messages/Renew/Rebind/Release/Confirm/ messages support for IPv6 address binding.
• Client configuration file support for IPv6 address assignment.
• Client lease file support for saving individual client ipv6address binding info.
• DNS server update support according to draft-ietf-dhc-dhcpv6-opt-dnsconfig-03.txt.
• Prefix delegation support according to draft-ietf-dhc-dhcpv6-opt-prefix-delegation-

03.txt
• radvd.conf update and radvd reload for prefix delegation

B. Support available but not validated yet
• Request option support
• Relay agent support (provided by NEC)
• Reconfig/Relay messages support. (based upon the NEC relay stuff)

C. ToDo List
• Authentication/User class/Vendor class/Interface-ID option support

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 15

5.2.4 Tests

5.2.4.1 Environment
As in most of the tests the platform was Debian Linux (testing) with 2.6.10 kernels.

5.2.4.2 Compiling the code/ Installing the software
This is how it is described and it woks fine.
 1. tar -xvzf dhcp6.tar
 2. CFLAGS=”-I <kernel include files>” ./configure --prefix=/usr/local
 3. CFLAGS=”-I <kernel include files>”make
 4. insmod ipv6 (if ipv6 is not compiled in the kernel)
 5. CFLAGS=”-I <kernel include files>” make install
 6. ./dhcp6s -dDf [eth0 eth1 ...] (start server, turn on debug)
 7. ./dhcp6c -dDf eth0 (start client, turn on debug)

5.2.4.3 Tests
Client and server worked fine when using configuration built up by information provided by the
man pages.

Server configuration file:
interface eth0 {

 server-preference 255;

 renew-time 60;

 rebind-time 90;

 prefer-life-time 130;

 valid-life-time 200;

 option dns_servers 2001:638:500:101::53 join.uni-muenster.de;

 link AAA {

 pool{

 range 2001:638:500:131::0000 to 2001:638:500:131::ffff/64;

 };

 };

 link AAB {

 relay 2001:638:500:132:208:e2ff:fe0e:2008/64;

 pool{

 range 2001:638:500:132::0000 to 2001:638:500:132::ffff/64;

 };

 };

 link AAC {

 relay 2001:638:500:101:208:e2ff:fe0e:2008/64;

 pool{

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 16

 range 2001:638:500:132::0000 to 2001:638:500:132::ffff/64;

 };

 };

};

Client config:
interface eth0 {
 request domain-name-servers;

 iaid 11111;

 renew-time 11000;

};
5.2.4.4 Results
While testing client and server on the same link everything works fine. In tests using a relay (in this
case the relay agent provided by a CISCO 7206 IOS 12.3(14)T) there was no success while testing.
5.2.4.5 Conclusions
Because of the broken relaying support the software is not yet usable for stateful operation in an
efficient way. As the development of this software has been stopped in 2004 it seems that there will
be no working version. Stateless operation for this implementation has not been tested at all.

5.3 Dibbler

5.3.1 Description

Dibbler is a portable DHCPv6 implementation. It supports stateful (i.e. IPv6 address granting) as
well as stateless (i.e. option granting) autoconfiguration for IPv6. Currently Linux 2.4/2.6 and
Windows XP ports are available. It features easy to use install packages (Clickable Windows
installer and RPM and DEB packages for Linux) and extensive documentation (both for users as
well as developers). Dibbler is developed under GNU GPL license. It means that it is free for all,
including commercial usage.

5.3.2 Documentation

The binary packages contain two .pdf files containing the complete documentation of the current
software. Using this it is very easy to configure and run it.

5.3.3 Functionality

The feature list as it can be found on the web site http://klub.com.pl/dhcpv6/
• MESSAGES: SOLICIT, ADVERTISE, REQUEST, REPLY - many servers support, client

can be configured to ask specific addrs. Client can be configured to ask for arbitrary number
of addrs. One client can be serviced by multiple servers (e.g. client asks for 5 addrs, prefered
server can lease only 3, so client sends request for remaining 2 addrs to backup server).

• MESSAGES: RENEW/REBIND/REPLY - fully configurable addrs/options renewal.

• MESSAGES: DECLINE/REPLY - Duplicate Address Detection (DAD) is fully supported.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 17

• MESSAGES: CONFIRM - supported by server, client-side support in progress

• MESSAGES: INFORMATION-REQUEST/REPLY - stateless autoconfiguration

• OPTIONS:IA - standard address assignment. Client can ask for specific addresses, multiple
IAs per one msg are supported

• OPTIONS:RAPID-COMMIT - expedited configuration (SOLICIT/REPLY)

• OPTIONS:UNICAST - messages can be exchanged using unicast communication instead of
multicast.

• OPTIONS:PREFERENCE - you can start multiple servers and configure them to have
preference between 0-255.

• OPTIONS:all required options (SERVERID,CLIENTID etc.) are supported

• ADDITIONAL OPTIONS:DNS Servers

• ADDITIONAL OPTIONS:domain name list

• ADDITIONAL OPTIONS:timezone

• ADDITIONAL OPTIONS:NTP servers

• ADDITIONAL OPTIONS:SIP servers addresses

• ADDITIONAL OPTIONS:SIP domain name

• ADDITIONAL OPTIONS:NIS servers addresses

• ADDITIONAL OPTIONS:NIS domain name

• ADDITIONAL OPTIONS:NIS+ servers addresses

• ADDITIONAL OPTIONS:NIS+ domain name

• ADDITIONAL OPTIONS:LIFETIME option, allowing other option renewal

• OTHER: Pure stateless mode configuration.

• OTHER: multiple servers support.

• OTHER: data is stored in XML, so Dibbler is easily scriptable.

• OTHER: architecture is layered - upper, fully portable is written in C++, lower, system-
specific is written in C. Porting to other system/architecture requires implementing only
small number of low-level functions (e.g. IPv6 addr adding).

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 18

5.3.4 Test of stateful operation

5.3.4.1 Environment
The software was tested on Debian Linux (i386 testing tree) and Microsoft Windows XP in a way
that either OS has been client and server with different clients.

5.3.4.2 Compiling the code
There were working binary packages available for each of the involved systems so there was no
need to compile the software. Just unpack edit the configuration files as described in the README
and use it. If the relaying feature is needed it is recommend to build the binaries using the latest
source-code.

5.3.4.3 Test
For testing there were used both a Linux and a Windows XP client for each a Linux and Windows
XP server. In any case there was the same result: Everything the client and server supports worked
fine with no difference between relayed and not relayed requests. The only issue was that dibbler
does not support temporary addresses, which became a problem during interoperability tests.

Server configuration file:
log-level 20

log-mode short

iface eth0 {

 T1 1000

 T2 2000

 class {

 pool 2001:638:500:101::54-2001:638:500:101::108

 }

 option dns-server 2001:638:500:101::53,::128.176.0.12

 option domain join.uni-muenster.de

}

iface relay1 {

 unicast 2001:638:500:200:2e0:81ff:fe29:9a7f

 T1 1000

 T2 2000

 relay eth0

 interface-id 20

 class {

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 19

 pool 2001:638:500:200::aaaa-2001:638:500:200::ffff

 }

 option dns-server 2001:638:500:101::53,::128.176.0.12

 option domain join.uni-muenster.de

}

iface relay2 {

 T1 1000

 T2 2000

 relay eth0

 interface-id 40

 class {

 pool 2001:638:500:132::aaaa-2001:638:500:132::ffff

 }

 option dns-server 2001:638:500:101::53,::128.176.0.12

 option domain join.uni-muenster.de

}

5.3.4.4 Conclusions
Because of the missing but planed relay-agent the software is not yet usable for stateful operation in
an efficient way. But we look forward that it will be if the relay is completely implemented.

5.3.5 Test of stateless operation

5.3.5.1 Testing methodology
Tests were designed to check the conformance with RFC 3315 [RFC3315] and RFC 3736
[RFC3736] standards of Dibbler [Dibbler] client and server implementation on Windows XP and
Linux platforms. To achieve this the goals shown in table 5 were set.

Table 5. Test goals

Goal Description

Client message format • Check if the message structure is RFC3315 [RFC3315] and RFC3736
[RFC3736] conformant.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 20

Goal Description

Transmission of
messages

• Check if the client sends messages using multicast.
• Check if the client sends only Information-Request messages to server.
• Check if the client can send Information-Request asking for DNS

servers, DNS search domains and SIP servers.
• Check if the client can send correct Information-Request message after

receiving Reply message from server.
• Check if the client implements Preference option.
• Check if the client implements User Class option.
• Check if the client implements Vendor Class option.
• Check if the client implements Vendor-specific Information option.
• Check if the server can reply for DNS servers, DNS search domains

and SIP servers requests from client.
• Check if the server responds only with Reply messages to client.
• Check if the server implements Client Identifier option.
• Check if the server implements Preference option.
• Check if the server implements Vendor-specific Information option.
• Check if server implements communication with relay agents.

Reliability of client
initiated message
exchanges

• Check the retransmission strategy to be used by clients when no
respond is from the server.

Authentication • Check if the client implements Authentication option.
• Check if the server implements Authentication option.
• Check authentication of DHCP messages.

Interaction with
operating system

• Check if the client can set DNS servers received from the server in the
operating system environment.

• Check if the client can set domain search list received from the server
in the operating system environment.

• Check if the client can set SIP servers list received from the server in
the operating system environment.

• Check if the client can clean-up the system when client is shut down
(killed).

5.3.5.1.1 Compiling the code
While testing the most recent version of Dibbler [Dibbler] was used (0.3 RC1). Linux version has a
serious bug that prevents program from running. In order to complete tests the bug had to be found
and fixed. The author was also informed about this inconvenience. TClntTransMgr class

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 21

(CintTransMgr.cpp file) in method openLoopbackSocket does not set the list pointer to the
beginning of the list of network interfaces. That prevents the application from getting interfaces
correctly and causes it to exit with error. In order to fix it one must add

IfaceMgr->firstIface();

right after the #ifndef WIN32 clause.
Windows version of Dibbler compiles pretty smooth and no problems were noticed.

5.3.5.1.2 Testing Environment and Tools
Testing environment consisted of four computers running Linux and Windows operating systems in
a separated network in PSNC. In case of Linux, Slackware 10.0 distribution was used with kernel
version 2.8.1 for x86 platform. The other operating system was Windows XP Professional with
Service Pack 2. To avoid any problems the firewalls were turned off. Three computers were
DHCPv6 stateless servers and one was DHCPv6 client.
Dibbler was tested with the latest packet capture program called Ethereal [Ethereal]. Ethereal has
support for IPv6 and in general has proved to be all RFCs complaint.
All packets and their fields were checked against RFC 3315 – Dynamic Host Configuration
Protocol for IPv6 (DHCPv6) [RFC3315].

5.3.5.2 Test results for Dibbler client
This chapter contains test results obtained from testing the Dibbler client for RFC 3736 [RFC3736]
conformance.

5.3.5.2.1 Get DNS servers test

The aim of this test is to check if dibbler client can send correct Information-request
message asking for DNS server address(es) and append DNS servers returned from server's
Reply message to the system servers list.

• Status
Test failed.
On Linux if resolv.conf doesn't end with CR the resulting resolv.conf is corrupted,
because Dibbler [Dibbler] doesn't append CR before appending DNS-server list.

• Preconditions
Client didn't send any message before this test.

• Input
client.conf:

log-mode short
iface eth0
{
 stateless

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 22

 option dns-server
 T1 60
 T2 60
}

• Expected output
Client should send Information-request message containing DNS recursive name server
option. Client should use multicast. Server should respond with Reply message
containing DNS servers addresses.

Client should then update DNS servers list.

• Actual output
Message sent to server:

Destination address: ff02::1:2 (ff02::1:2)
Message type: Information-request (11)
 Transaction-ID: 0x00364437
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099494430
 Link-layer address
 Elapsed time
 option type: 8
 option length: 2
 elapsed-time: 1 sec
 Option Request
 option type: 6
 option length: 4
 Requested Option code: DNS recursive name server (23)
 Requested Option code: Unknown (42)

Message received from server:

Message type: Reply (7)
 Transaction-ID: 0x00364437
 Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099494430
 Link-layer address
 DNS recursive name server
 option type: 23
 option length: 32
 DNS servers address: 2000::100
 DNS servers address: 2000::101
 Server Identifier
 option type: 2
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099923422
 Link-layer address

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 23

5.3.5.2.2 Get DNS servers when it was already obtained from server test
The aim of this test is to check if client can send correct Information-request message asking
for DNS server address(es) and append DNS servers returned from server's Reply message
to the system DNS servers list after at least one Information-request message was sent prior
test.

• Status
Test failed.
Client uses multicast. On Linux and Windows implementation no message was received
from the server. Message sent to the server is RFC 3315 [RFC3315] complaint, but it did not
contain any option. The server did not respond to the Information-request message, which is
correct behavior, because there was no option in the Information-request message.

• Preconditions
Client sent Information-request message before this test.

• Input
Configuration file (client.conf):

log-mode short
iface eth0
{
 stateless
 option dns-server
 T1 60
 T2 60
}

• Expected output
Client should send Information-request message containing DNS recursive name server
option. Client should use multicast.
Server should respond with Reply message containing DNS servers addresses.
Client should then update DNS servers list.

• Actual output
Message sent to server:

Destination address: ff02::1:2 (ff02::1:2)
Message type: Information-request (11)
Transaction-ID: 0x00364437
Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099494430
 Link-layer address
Elapsed time
 option type: 8
 option length: 2
 elapsed-time: 2 sec

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 24

5.3.5.2.3 Client shut down test
Dibbler client application is released (killed).

• Status
Test failed.
On Linux client removes from resolv.conf DNS servers and domain search list received
from server. Unfortunately it also changes the resolv.conf's access control list to 0014.
Although removal of DNS servers and domain search list received from server is desired,
access control list should not be changed, so it is considered as a bug.

• Preconditions
Dibbler client changed system configuration (received at least one REPLY message from
server). resolv.conf contains DNS server list received from dibbler client.

• Input
client.conf:

log-mode short
iface eth0
{
 stateless
 option dns-server
 option domain
 T1 60
 T2 60
}

• Expected output
Client restores system state that was prior to running client - removes from resolv.conf
(Linux) DNS servers and domain search list received from server. No message is send to
server.
Client calls external program netsh.exe with valid parameters and eventually removes DNS
entries from the system.

• Actual output
On both platforms client did not send any message to server when being shut down.

• Linux
Client removes from resolv.conf DNS servers and domain search list received from server.
Unfortunately it also changes the resolv.conf's access control list to 0014. Although removal
of DNS servers and domain search list received from server is desired, access control list
should not be changed, so it is considered as a bug.

• Windows
Client calls external program netsh.exe with valid parameters and eventually removes DNS
entries from the system.

5.3.5.2.4 Get domain search list test
Client sends Information-request to the server asking for domain search list.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 25

• Status
Test failed.
On Linux client sends Information-request containing option Domain Search List. The
message is complaint with RFC 3315 [RFC3315] and RFC 3736 [RFC3736]. Server
responds to the client with Reply message containing domain search list. Client updates the
domain search list in the resolv.conf, but also adds 0xCD character at the end of the domain
search list before the CR character. It is only the case when only one domain search list is
returned.

• Preconditions
Client didn't send any message before this test.

• Input
client.conf:

log-mode short
iface eth0
{
 stateless
 option domain
 T1 60
 T2 60
}

• Expected output
Client sends Information-request containing option Domain Search List. Client should use
Server responds to the client with Reply message containing domain search list. Client
updates the domain search list in the system.

• Actual output
Client sent the following message:

Destination address: ff02::1:2 (ff02::1:2)
Message type: Information-request (11)
Transaction-ID: 0x001840f8
Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099494430
 Link-layer address
Elapsed time
 option type: 8
 option length: 2
 elapsed-time: 1 sec
Option Request
 option type: 6
 option length: 4
 Requested Option code: Domain Search List (24)
 Requested Option code: Unknown (42)

Server replied with the following message:

Message type: Reply (7)

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 26

Transaction-ID: 0x001840f8
Client Identifier
 option type: 1
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099494430
 Link-layer address
Domain Search List
 option type: 24
 option length: 31
 DNS Domain Search List
Server Identifier
 option type: 2
 option length: 14
 DUID type: link-layer address plus time (1)
 Hardware type: 0
 Time: 1099923422
 Link-layer address

• Linux
Client sends Information-request containing option Domain Search List. The message is
complaint with RFC 3315 [RFC3315] and RFC 3736 [RFC3736]. Server responds to the
client with Reply message containing domain search list. Client updates the domain search
list in the resolv.conf, but also adds 0xCD character at the end of the domain search list
before the CR character. It is only the case when only one domain search list is returned.

• Windows
Not implemented, no actions are taken.

5.3.5.2.5 Reliability of client initiated message exchanges test
This test case tests the retransmission strategy to be used by clients in client-initiated
message exchanges. With each message transmission or retransmission, the client sets
Retransmission Timeout. If retransmission time expires before the message terminates, the
client recomputes the retransmission time and retransmits the message.

• Status
Test failed.
The series of Retransmission Timeouts are not described by the RT equation in RFC 3315
[RFC3315].

• Preconditions
No connection with dhcpv6 server. Client sent Information-request message.

• Input
client.conf
log-mode short
iface eth0
{
 stateless
 option domain
 T1 60
 T2 60
}

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 27

• Expected output
Client should wait retransmission timeout equal to RT = 2 * RT prev + RANDOM * RT prev
where:
RT prev is previous retransmission timeout. RANDOM is s randomization factor, which is a
random number with a uniform distribution between -0.1 and +0.1.
The algorithm for choosing random number should produce a different sequence of random
numbers from each invocation of the DHCP client.
Maximum retransmission count, maximum retransmission time and maximum
retransmission duration are not implemented in Dibbler client, so they are not taken into
account.

• Actual output
Client sends correct Information-request messages after the retransmission timeout.
The following retransmission timeouts were obtained:
1, 2, 4, 8, 16, 33, 64, 131, 122, 131, 128, 117, 119, 116, 113, 115, 119, 116, 122, 123, 132,
121, 121
The series above are not described by the RT equation in RFC 3315 [RFC3315].

5.3.5.3 Test results for Dibbler server
Server was launched on Linux and Windows platform and some unexpected behavior was
noticed.
Format of all messages sent by server was checked against RFC 3315 [RFC3315].

5.3.5.3.1 Stateless server test

Check if server acts as a stateless server. Client asks for address and DNS name server.
Stateless server should response with DNS server name only.

• Status
Test failed.
Server sends every information client asked. This behavior is wrong since RFC 3315
[RFC3315] says that stateless servers cannot send any addresses.

• Expected output
Client initiates process to gain IPv6 address and DNS server name. Stateless server should
respond with DNS server name only.

• Actual output
Message sent to server:

Message type: Request (3)

 Transaction-ID: 0x000042db

 Client Identifier

 option type: 1

 option length: 14

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 28

 DUID type: link-layer address plus time (1)

 Hardware type: 6

 Time: 1100075912

 Link-layer address

 Identify Association

 option type: 3

 option length: 40

 IAID: 2

 T1: 4294967295

 T2: 4294967295

 IA Address

 option type: 5

 option length: 24

 IPv6 address: ::

 Preferred lifetime: infinity

 Valid lifetime: infinity

 Elapsed time

 option type: 8

 option length: 2

 elapsed-time: 3 sec

 Option Request

 option type: 6

 option length: 2

 Requested Option code: DNS recursive name server (23)

 Server Identifier

 option type: 2

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 0

 Time: 1100077688
 Link-layer address

Message sent from server to client:

Message type: Reply (7)

 Transaction-ID: 0x000042db

 Client Identifier

 option type: 1

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 6

 Time: 1100075912

 Link-layer address

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 29

 Identify Association

 option type: 3

 option length: 74

 IAID: 2

 T1: 60

 T2: 60

 IA Address

 option type: 5

 option length: 24

 IPv6 address: 2001::2e

 Preferred lifetime: 1800

 Valid lifetime: 3600

 Status code

 option type: 13

 option length: 30

 Status Code: Success (0)

 Status Message: All addresses were assigned.

 Server Identifier

 option type: 2

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 0

 Time: 1100077688

 Link-layer address

 DNS recursive name server

 option type: 23

 option length: 32

 DNS servers address: 2000::500

 DNS servers address: 2000::501

5.3.5.3.2 SIP Server test
Check if SIP server option is supported.

• Status
Test passed.
Client wants to get DNS server name and SIP server. Server returns message with
information client asked for.

• Preconditions
Both clients and server interact for the first time.

• Input
client.conf:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 30

log-level 8

log-mode short

iface eth0

{

 option dns-server

 option sip-server

 ia {

 }

}

server.conf:

iface eth0

{

 option dns-server 2000::600, 2000::601

 option domain test.com

 option sip-server 2000::99

 class {

 pool 2000::1-2000::ff

 }

}

• Expected output
Client needs to get DNS server name and SIP server. Upon receiving request server should
provide client with that information.

• Actual output
Message sent to server:

 Message type: Information-request (11)

 Transaction-ID: 0x0000247b

 Client Identifier

 option type: 1

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 6

 Time: 1100075912

 Link-layer address

 Elapsed time

 option type: 8

 option length: 2

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 31

 elapsed-time: 1 sec

 Option Request

 option type: 6

 option length: 6

 Requested Option code: DNS recursive name server (23)

 Requested Option code: SIP Server Domain Name List (21)

 Requested Option code: Unknown (42)

Message sent back from server to client:

Message type: Reply (7)

 Transaction-ID: 0x0000247b

 Client Identifier

 option type: 1

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 6

 Time: 1100075912

 Link-layer address

 DNS recursive name server

 option type: 23

 option length: 32

 DNS servers address: 2000::500

 DNS servers address: 2000::501

 SIP Server Domain Name List

 option type: 21

 option length: 16

 SIP Servers Domain Search List

 SIP servers address: 2000::99

 Server Identifier

 option type: 2

 option length: 14

 DUID type: link-layer address plus time (1)

 Hardware type: 0

 Time: 1100077688

 Link-layer address

5.3.5.3.3 Accept only certain clients test
Check to see if server is able to accept only clients from specific address range.

• Status
Test passed.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 32

Server performs message sending only to the clients who are on the accept list. Other clients
are denied.

• Preconditions
Both clients and server interact for the first time.

• Input
server.conf:

log-level 8

log-mode short

iface eth0

{

 option dns-server 2000::600, 2000::601

 option domain test.com

 class {

 accept-only 2000::00-2000::20

 pool 2000::1-2000::ff

 }

}

• Expected output
Clients send periodically Information-request message in order to get some configuration
parameters. Server should deny those clients who are not on the accept list.

• Actual Output
Server performs message sending only to the clients who are on the accept list. Other clients
are denied.

5.3.5.3.4 Reject certain clients test
This test checks if server has ability to refuse clients specified on the reject-clients list.

• Status
Test passed.
Server sends messages only to the clients that are out of the reject-clients list range. Clients
with rejected addresses receive no messages.

• Preconditions
Both clients and server interact for the first time.

• Input
server.conf:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 33

log-level 8

log-mode short

iface eth0

{

 option dns-server 2000::600, 2000::601

 option domain test.com

 class {

 pool 2000::1-2000::ff

 }

}

• Expected output
Clients send periodically INFORMATION-REQUEST message in order to get some
configuration parameters. Server should deny clients message whose address is within reject
list range.

• Actual Output
Server sends messages only to the clients that are out of the reject-clients list range. Clients
with rejected addresses receive no messages.

5.3.5.4 Conclusions
Both server and client are configurable through their configuration file, which has its own text
format. Although format is simple, it is not portable. We suggest that it should be written as an xml
file.
Many features are not implemented in Dibbler [Dibbler]. The full comparison is shown in table 6.
Some features are described in Dibbler's documentation, others were discovered during tests.
Dibbler suffers from lack of authentication. Although this option is optional it could greatly
improve safety of sending of messages and prevent from possible attacks.

Table 6. Features in Dibbler

Feature Status
Transmission of messages Implemented
Reliability (retransmission) Implemented
Preference Not implemented
User Class Not implemented
Vendor Class Not implemented
Vendor-specific Information Not implemented
Authentication Not implemented

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 34

DNS servers Implemented
Domain search list Implemented, but Windows version does not interact with

operating system environment
SIP servers Implemented, but neither Linux port nor Windows port set it

in operating system environment
Elapsed time Implemented
Client identifier Implemented
Relay agents Not implemented
Server identifier Implemented

Both server and client proved to be stable. During tests, which some of them took several hours, no
crash occurred. Tests were performed under Linux and Windows. Test results are shown in table 7.
Structure of messages is the same as RFC 3315 [RFC3315] and RFC 3736 [RFC3736]
specification. What is interesting and might be a bug in client software is the fact that Information-
request message sent by client contains unknown option (42) when Information-request message
contains any query option.
Additionally, Dibbler server cannot be configured to run only in stateless mode. Dibbler server
replies to both stateless and stateful clients although RFC 3736 [RFC3736] states that stateless
server should discard any stateful messages.
The Retransmission Timeout series resulting from client are not compliant to RFC3315 [RFC3315],
because they are not described by the RT equation in RFC3315 [RFC3315].

Table 7. Test results.

 Test goal Result

Client message format Message structure is RFC3315 [RFC3315] and RFC3736 [RFC3736]
conformant, but every Information-request message contains unknown
option (42).

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 35

 Test goal Result

Transmission of
messages

• Client uses multicast to send messages.
• Client sends only Information-Request messages to server.
• Client can send Information-Request asking for DNS servers, DNS

search domains and SIP servers.
• Client cannot send correct Information-Request message after

receiving Reply message from server.
• Client does not implement Preference option, User Class option,

Vendor Class option, Vendor-specific Information option
• Server can reply for DNS servers, DNS search domains and SIP

servers requests from client.
• Server not only responds with Reply messages to client.
• Server implements Client Identifier option.
• Server does not implement Preference option, Vendor-specific

Information option.
• Server does not implement communication with relay agents.

Reliability of client
initiated message
exchanges

• The Retransmission Timeout series resulting from client are not
described by the RT equation in RFC 3315 [RFC3315] (not
compliant).

Authentication • Authentication is not implemented in client and server.

Operating system
interaction

• Client not always sets DNS servers received from the server
correctly in the operating system environment in Linux
environment.

• Client can set DNS servers received from the server in the operating
system environment in Windows XP environment.

• Client not always sets domain search list received from the server
correctly in the Linux operating system environment.

• Client cannot set domain search list received from the server in the
Windows XP operating system environment – not implemented

• Client cannot set SIP servers list received from the server in the
operating system environment.

• Client cannot clean-up the system when client is shut down (killed)
on Linux environment

• Client can clean-up the system when client is shut down (killed) on
Windows XP environment

Dibbler client, after receiving Reply message from server, sends every Information-request
message, which does not contain any option although it should contain at least one. Therefore

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 36

server does not respond to client's requests. This is correct behavior for server but incorrect for
client. This is also the case for domain search list and SIP server’s list options.
Client does not always set DNS servers received from the server correctly in the Linux
environment. If resolv.conf doesn't end with CR the resulting resolv.conf is corrupted, because
Dibbler does not append CR before appending dns-server list.
On Linux client updates the domain search list in the resolv.conf, but also adds 0xCD character at
the end of the domain search list before the CR character. This is only the case when returned
search list contains one domain.
Windows XP client does not implement two important features. It cannot set domain search list
received from the server in the operating system environment. This is also the case for SIP servers
list. SIP servers are not also implemented in Linux port of Dibbler. Returned SIP servers are stored
in dibbler's xml files.
When client is shut down on Linux it removes from resolv.conf DNS servers and domain search
lists received from server. Unfortunately, it also changes the resolv.conf's access control list to
0014. Although removal of DNS servers and domain search lists received from server is desired,
access control list should not be changed.
It is also interesting to note although it was not the goal of this document that according to Dibbler's
author [Dibbler] core logic is system independent, which is not true for client implementation. It
was revealed accidentally by detecting the bug that we stuck into while testing Linux client. There
are fragments in core logic that are operating system dependent. List of network interfaces is not
reset and pointer does not point to the first interface on the list. It is a case for non-Windows ports.
Taking into consideration all test results that were made it is not recommended to use Dibbler
server and client in production environment.

5.4 HP-UX
The HP-UX DHCPv6 implementation is available for HP-UX only. So far none of the 6NET
partners has an HP-UX system at hand and is ready to test this implementation.

5.5 KAME

5.5.1 Description

This implementation supports prefix delegation, DNS server updates which feature is extensively
used some 6NET partners, list of NTP servers, list of SIP servers but those features are not
validated yet. It also supports relaying, however it is not tested.

5.5.2 Documentation

Documentation is provided by KAME as man pages. The following manuals are available
dhcp6c.conf(5), dhcp6s.conf(5), dhcp6c(8), dhcp6s(8), dhcp6relay(8), dhcp6sctl(8).

5.5.3 Functionality

The authors of the software provide the following feature list:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 37

• IPv6 prefix delegation
• List of the DNS server addresses
• DNS Domain search list
• List of the NTP server addresses
• List of the SIP server addresses
• SIP server domain
• Supported Options: Rapid commit, Server Preference, Information Request.
• Elapsed Time, ClientID, ServerID, IA_PD, Status support.
• Solicit/Request/Advertise/Reply/Information-request

messages/Renew/Rebind/Release/Confirm/ messages support for IPv6 address binding.
• Client configuration file support for IPv6 prefix delegation
• Prefix delegation support according to draft-ietf-dhc-dhcpv6-opt-prefix-delegation-

03.txt

ToDo List
• Authentication/User class/Vendor class/Interface-ID option support
• Relay agent support.
• Reconfig/Relay messages support.

5.5.4 Test of stateless operation

5.5.4.1 Environment
The tests are executed on FreeBSD (4.10-STABLE and 5.3-STABLE). The software should be
easily ported to other BSD platforms and Linux also.

5.5.4.2 Compiling the code/ Installing the software
This is how it is described and it works fine:

1. cd /usr/ports/net/dhcp6/
2. make install ; make clean
3. cd /usr/local/etc
4. cp dhcp6c.conf.sample dhcp6c.conf (copy client configuration file)
5. cp dhcp6s.conf .sample dhcp6s.conf (copy server configuration file)
6. /usr/local/sbin/dhcp6s -Df [fxp0 bge1 ...] (start server, turn on debug)
7. /usr/local/sbin/dhcp6c -Df fxp0 (start client, turn on debug)

5.5.4.3 Tests
We tested DNS server configuration via DHCPv6 on the same link with two different setups:

• DNS server configuration provided by KAME DHCPv6 server and used by KAME
DHCPv6 client.

• DNS server configuration provided by Cisco DHCPv6 server and used by KAME DHCPv6
client

•

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 38

5.5.4.3.1 KAME DHCPv6 server
Client and server worked fine when using configuration built up with information provided by the
man pages.

Server configuration file:
option domain-name-servers 2001:db8::35;

Client config:
Interface fxp0{

 information-only;
};

5.5.4.3.1.1 Client debug output

dhcp6c -Df fxp0

Nov/17/2004 23:16:48: cfdebug_print: <3>comment [# The followings are a sample
configuration for requiring the "stateless"] (73)

Nov/17/2004 23:16:48: cfdebug_print: <3>comment [# DHCPv6 service.] (17)

Nov/17/2004 23:16:48: cfdebug_print: <3>[interface] (9)

Nov/17/2004 23:16:48: cfdebug_print: <5>[fxp0] (4)

Nov/17/2004 23:16:48: cfdebug_print: <3>begin of closure [{] (1)

Nov/17/2004 23:16:48: cfdebug_print: <3>[information-only] (16)

Nov/17/2004 23:16:48: cfdebug_print: <3>end of sentence [;] (1)

Nov/17/2004 23:16:48: cfdebug_print: <3>end of closure [}] (1)

Nov/17/2004 23:16:48: cfdebug_print: <3>end of sentence [;] (1)

Nov/17/2004 23:16:48: get_duid: extracted an existing DUID from
/var/db/dhcp6c_duid: 00:01:00:01:09:2e:84:8c:36:4f:c0:b2:14:30

Nov/17/2004 23:16:48: dhcp6_reset_timer: reset a timer on fxp0, state=INIT,
timeo=0, retrans=383

Nov/17/2004 23:16:48: client6_send: a new XID (87592b) is generated

Nov/17/2004 23:16:48: copy_option: set client ID (len 14)

Nov/17/2004 23:16:48: copy_option: set elapsed time (len 2)

Nov/17/2004 23:16:48: client6_send: send information request to ff02::1:2%fxp0

Nov/17/2004 23:16:48: dhcp6_reset_timer: reset a timer on fxp0, state=INFOREQ,
timeo=0, retrans=988

Nov/17/2004 23:16:48: client6_recv: receive reply from
fe80::20f:1fff:fea4:ba0a%fxp0 on fxp0

Nov/17/2004 23:16:48: dhcp6_get_options: get DHCP option client ID, len 14

Nov/17/2004 23:16:48: DUID: 00:01:00:01:09:2e:84:8c:36:4f:c0:b2:14:30

Nov/17/2004 23:16:48: dhcp6_get_options: get DHCP option server ID, len 14

Nov/17/2004 23:16:48: DUID: 00:01:00:01:09:2e:84:4e:36:4f:c0:b2:14:30

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 39

Nov/17/2004 23:16:48: dhcp6_get_options: get DHCP option DNS, len 16

Nov/17/2004 23:16:48: client6_recvreply: nameserver[0] 2001:db8::35

Nov/17/2004 23:16:48: dhcp6_remove_event: removing an event on fxp0,
state=INFOREQ

Nov/17/2004 23:16:48: client6_recvreply: got an expected reply, sleeping.

5.5.4.3.1.2 Cisco debug output

dhcp6s -c /usr/local/etc/dhcp6s.conf -Df fxp0

Nov/17/2004 23:16:32: cfdebug_print: <3>comment [# The followings are a sample
configuration to provide a DNS server address] (75)

Nov/17/2004 23:16:32: cfdebug_print: <3>comment [# for every client as well as
to delegate a permanent IPv6 prefix] (65)

Nov/17/2004 23:16:32: cfdebug_print: <3>comment [# 2001:db8:1111::/48 to a
client whose DUID is 00:01:00:01:aa:bb.] (65)

Nov/17/2004 23:16:32: cfdebug_print: <3>[option] (6)

Nov/17/2004 23:16:32: cfdebug_print: <3>[domain-name-servers] (19)

Nov/17/2004 23:16:32: cfdebug_print: <3>[2001:db8::35] (12)

Nov/17/2004 23:16:32: cfdebug_print: <3>end of sentence [;] (1)

Nov/17/2004 23:16:32: get_duid: extracted an existing DUID from
/var/db/dhcp6s_duid: 00:01:00:01:09:2e:84:4e:36:4f:c0:b2:14:30

Nov/17/2004 23:16:32: ctlauthinit: failed to open /usr/local/etc/dhcp6sctlkey:
No such file or directory

Nov/17/2004 23:16:32: server6_init: failed initialize control message
authentication

Nov/17/2004 23:16:32: server6_init: skip opening control port

Nov/17/2004 23:16:48: server6_recv: received information request from
fe80::20f:1fff:fea4:ba0a%fxp0

Nov/17/2004 23:16:48: dhcp6_get_options: get DHCP option client ID, len 14

Nov/17/2004 23:16:48: DUID: 00:01:00:01:09:2e:84:8c:36:4f:c0:b2:14:30

Nov/17/2004 23:16:48: dhcp6_get_options: get DHCP option elapsed time, len 2

Nov/17/2004 23:16:48: elapsed time: 0

Nov/17/2004 23:16:48: copy_option: set client ID (len 14)

Nov/17/2004 23:16:48: copy_option: set server ID (len 14)

Nov/17/2004 23:16:48: copy_option: set DNS (len 16)

Nov/17/2004 23:16:48: server6_send: transmit reply to
fe80::20f:1fff:fea4:ba0a%fxp0

5.5.4.3.1.3 Assessment of test result

Both client and server properly formed their DUID. The client was able to request information from
the server and report it back the configured DNS nameserver to dhcp6c client program.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 40

5.5.4.3.2 Cisco DHCPv6 server with KAME DHCPv6 client
Client and server worked fine when using configuration built up with information provided by the
man pages.

Cisco router configuration snippets:

ipv6 dhcp pool dhcp6dns

 dns-server 2001:738:0:402::2

 domain-name ki.iif.hu

and on the interface configuration:
ipv6 dhcp server dhcp6dns

Client config (same as before):
Interface fxp0{

 information-only;

};

5.5.4.3.2.1 Client debug output

/usr/local/sbin/dhcp6c -Df fxp0
Nov/18/2004 16:58:45: cfdebug_print: <3>comment [# The followings are a sample
configuration for requiring the "stateless"] (73)
Nov/18/2004 16:58:45: cfdebug_print: <3>comment [# DHCPv6 service.] (17)
Nov/18/2004 16:58:45: cfdebug_print: <3>[interface] (9)
Nov/18/2004 16:58:45: cfdebug_print: <5>[fxp0] (4)
Nov/18/2004 16:58:45: cfdebug_print: <3>begin of closure [{] (1)
Nov/18/2004 16:58:45: cfdebug_print: <3>[information-only] (16)
Nov/18/2004 16:58:45: cfdebug_print: <3>end of sentence [;] (1)
Nov/18/2004 16:58:45: cfdebug_print: <3>end of closure [}] (1)
Nov/18/2004 16:58:45: cfdebug_print: <3>end of sentence [;] (1)
Nov/18/2004 16:58:45: get_duid: extracted an existing DUID from
/var/db/dhcp6c_duid: 00:01:00:01:09:2e:84:8c:36:4f:c0:b2:14:30
Nov/18/2004 16:58:45: dhcp6_reset_timer: reset a timer on fxp0, state=INIT,
timeo=0, retrans=383
Nov/18/2004 16:58:45: client6_send: a new XID (dcd7e) is generated
Nov/18/2004 16:58:45: copy_option: set client ID (len 14)
Nov/18/2004 16:58:45: copy_option: set elapsed time (len 2)
Nov/18/2004 16:58:45: client6_send: send information request to ff02::1:2%fxp0
Nov/18/2004 16:58:45: dhcp6_reset_timer: reset a timer on fxp0, state=INFOREQ,
timeo=0, retrans=988
Nov/18/2004 16:58:45: client6_recv: receive reply from
fe80::20b:45ff:fea4:f808%fxp0 on fxp0
Nov/18/2004 16:58:45: dhcp6_get_options: get DHCP option server ID, len 10
Nov/18/2004 16:58:45: DUID: 00:03:00:01:00:0b:45:a4:f8:06
Nov/18/2004 16:58:45: dhcp6_get_options: get DHCP option client ID, len 14
Nov/18/2004 16:58:45: DUID: 00:01:00:01:09:2e:84:8c:36:4f:c0:b2:14:30
Nov/18/2004 16:58:45: dhcp6_get_options: get DHCP option DNS, len 16
Nov/18/2004 16:58:45: dhcp6_get_options: get DHCP option domain search list, len
11

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 41

Nov/18/2004 16:58:45: client6_recvreply: nameserver[0] 2001:738:0:402::2
Nov/18/2004 16:58:45: client6_recvreply: Domain search list[0] ki.iif.hu.
Nov/18/2004 16:58:45: dhcp6_remove_event: removing an event on fxp0,
state=INFOREQ
Nov/18/2004 16:58:45: client6_recvreply: got an expected reply, sleeping.

5.5.4.3.2.2 Server debug output

cntrl.6net.hbone.hu#debug ipv6 dhcp detail

IPv6 DHCP debugging is on (detailed)

cntrl.6net.hbone.hu#

*Nov 18 15:48:51 UTC: IPv6 DHCP: Received INFORMATION-REQUEST from
FE80::20F:1FFF:FEA4:BA0A on GigabitEthernet0/0.801

*Nov 18 15:48:51 UTC: IPv6 DHCP: detailed packet contents

*Nov 18 15:48:51 UTC: src FE80::20F:1FFF:FEA4:BA0A (GigabitEthernet0/0.801)

*Nov 18 15:48:51 UTC: dst FF02::1:2

*Nov 18 15:48:51 UTC: type INFORMATION-REQUEST(11), xid 904574

*Nov 18 15:48:51 UTC: option CLIENTID(1), len 14

*Nov 18 15:48:51 UTC: 00010001092E848C364FC0B21430

*Nov 18 15:48:51 UTC: option ELAPSED-TIME(8), len 2

*Nov 18 15:48:51 UTC: elapsed-time 0

*Nov 18 15:48:51 UTC: IPv6 DHCP: Sending REPLY to FE80::20F:1FFF:FEA4:BA0A on
GigabitEthernet0/0.801

*Nov 18 15:48:51 UTC: IPv6 DHCP: detailed packet contents

*Nov 18 15:48:51 UTC: src FE80::20B:45FF:FEA4:F808

*Nov 18 15:48:51 UTC: dst FE80::20F:1FFF:FEA4:BA0A (GigabitEthernet0/0.801)

*Nov 18 15:48:51 UTC: type REPLY(7), xid 904574

*Nov 18 15:48:51 UTC: option SERVERID(2), len 10

*Nov 18 15:48:51 UTC: 00030001000B45A4F806

*Nov 18 15:48:51 UTC: option CLIENTID(1), len 14

*Nov 18 15:48:51 UTC: 00010001092E848C364FC0B21430

*Nov 18 15:48:51 UTC: option DNS-SERVERS(23), len 16

*Nov 18 15:48:51 UTC: 2001:738:0:402::2

*Nov 18 15:48:51 UTC: option DOMAIN-LIST(24), len 11

*Nov 18 15:48:51 UTC: ki.iif.hu

5.5.4.3.2.3 Assessment of test result

Both client and server properly formed their DUID. The client was able to request information from
the server and report it back the configured DNS nameserver and domain-list to dhcp6c client
program.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 42

5.5.4.4 Conclusions
The KAME implementation can be used effectively for stateless operation to distribute DNS
information for autoconfigured clients. We are using it in the production environment with Cisco
router as a DHCPv6 server. We look forward to testing the relaying capabilities of both Cisco and
KAME implementation to provide DNS configuration information for autoconfigured IPv6 clients.

5.6 Cisco

5.6.1 Relay

Since 12.3(11)T the Cisco IOS contains a dhcpv6 relay. JOIN tested it together with the DHCP
server and Client provided by NEC Europe Ltd. The relay behaves as it was expected. To enable the
relaying on a link there is only one command for the appropriate interface necessary:
Router:(config-if)# ipv6 dhcp relay destination <ipv6-address-of-dhcpv6-server>
A short test was done as an interoperability test (see below in section 5.9).

5.7 Juniper
We are planning to test it for stateless operation to distribute DNS information.

5.8 Hitachi
So far not tested.

5.9 Interoperability

5.9.1 Example interoperability test

5.9.1.1 Environment
The Sourceforge DHCPv6 client v0.10 was tested on Linux together with the Cisco IOS stateless
DHCP server (IOS 12.3(11.1)T).

5.9.1.2 Configuration
The sourceforge client uses wrong DNS option numbers while Cisco uses what is specified in RFC
3646. This can be fixed by configure by using the following configure flags:
 --with-opt-dns-resolvers=23 --with-opt-domain-list=24

5.9.1.2.1 Client config
This enables the client for "stateless mode" and asks for DNS info:

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 43

 interface eth0 {

 request domain-name-servers;

 information-only;

 };

5.9.1.2.2 Server config 1
 ipv6 dhcp pool uninett

 dns-server 2001:700:0:503::CA53

 domain-name uninett.no

5.9.1.2.3 Server config 2
Adding an additional nameserver:

 ipv6 dhcp pool uninett

 dns-server 2001:700:0:503::CA53

 dns-server 2001:700:0:503::CA54

 domain-name uninett.no

5.9.1.2.4 Server config 3
Defining an IPv4 nameserver:

 ipv6 dhcp pool uninett

 dns-server ::FFFF:158.38.60.10

 domain-name uninett.no

That is, using IPv4-mapped IPv6 address as defined by RFC 3513.

5.9.1.3 Results
5.9.1.3.1 Server config 1
This basic configuration works as desired, creating the following resolv.conf on the client:

nameserver 2001:700:0:503::ca53

search uninett.no

5.9.1.3.2 Server config 2
In this case the client then created the resolv.conf

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 44

 nameserver 2001:700:0:503::ca53 2001:700:0:503::ca54

 search uninett.no

which is wrong. It should have used two nameserver lines.

5.9.1.3.3 Server config 3
Result is the resolv.conf file:

 nameserver ::ffff:158.38.60.10

 earch uninett.no

Which indeed worked fine with the glibc resolver on Linux. That is, it allows mapped addresses,
and used IPv4 with the address 158.38.60.10. Configuring IPv4 servers (or a mix of v4 and v6
servers) with DHCPv6 in this way seems to be a bit controversial and may not work, but it might be
useful.

5.9.2 Interoperability matrix for stateful operation

After initial tests described in Fehler! Verweisquelle konnte nicht gefunden werden. to 5.3 the
interoperability of the tested implementations was checked. Because every server/client pair stated
that there is relaying support there are four matrices. Two for without relay and two for with relay.
In each of these cases the behaviour of the client during starting and terminating the client is shown.
Each field consist of three lines:
First line: IP address assigned or not assigned to the interface.
Second line: nameserver entry in /etc/resolv.conf
Third line: search(domain) entry in /etc/resolv.conf
5.9.2.1 Without relay (startup):

 Server
Client

NEC Dibbler Sourceforge.net

NEC Assigned
Inserted (1)
Replaced

Fails (4)
Inserted (1)
Replaced

Fails (6)

Dibbler Assigned
Inserted (1)
Added (2)

Assigned
Inserted (1)
Added (2)

Assigned
Inserted (1)
Added (2)

Sourceforge.net Assigned
Inserted (1)
Fails (3)

Assigned (5)
Inserted (1)
Fails (3)

Fails (7)
Inserted (1)
Added (2)

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 45

5.9.2.2 Without relay (shutdown):

 Server
Client

NEC Dibbler Sourceforge.net

NEC Everything left as is Everything left as is Fails (6)
Dibbler Everything cleaned up Everything cleaned up Everything cleaned up
Sourceforge.net Everything cleaned up Everything cleaned up Everything cleaned up

5.9.2.3 With relay (startup):

 Server
Client

NEC Dibbler Sourceforge.net

NEC Assigned
Inserted (1)
Replaced

Fails (4)
Inserted (1)
Replaced

Fails (8)

Dibbler Assigned
Inserted (1)
Added (2)

Assigned
Inserted (1)
Added (2)

Fails (8)

Sourceforge.net Assigned
Inserted (1)
Fails (3)

Assigned (5)
Inserted (1)
Fails (3)

Fails (8)

5.9.2.4 With relay (shutdown):

 Server
Client

NEC Dibbler Sourceforge.net

NEC Everything left as is Everything left as is Fails (8)
Dibbler Everything cleaned up Everything cleaned up Fails (8)
Sourceforge.net Everything cleaned up Everything cleaned up Fails (8)

The limitations given by numbers in brackets in the tables above are:
(1): DNS Server is inserted but there are allowed only three nameserver lines in resolv.conf .
(2): The search domain is added as additional search entry instead of appending or replacing t/of a
existing line.
(3): Client does not know how to handle the option given by the server.
(4): Server does not know about OPTION_IA_NA (non-temporary address) asked for by the client.
(5): Client has to be instructed explicitly to ask for a temporary address
(6): NEC client dies because of no obvious reason

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 46

(7): Client was not able to bind the new address to the interface
(8): Server does not decode the relay message correctly

6 Conclusion
Speaking of address delegation with DHCPv6, the implementations mostly seem to be immature. In
addition, the implementations do not interoperate properly. Obviously there has to take place more
interaction between the different developers. So from a today’s point of view, stateful DHCPv6
service is not deployable or at least only with some limitations. But there were giant steps since the
contribution of the last version of this document. So it seems that there will be a complete
implementation in the near future for the major operating systems.
The stateless mode of DHCPv6 and especially the prefix delegation and nameservice option are
more widely implemented as they seem to be more important for today’s networks. This document
does not show detailed tests of all implementations for these features, but to the knowledge of the
authors prefix delegation and nameservice option should work fine for most of them. The lack of
DHCPv6 relays is not so important in the stateless mode, as one could set up a DHCPv6 server on
every link’s router. So at least the stateless feature sets seem to be deployable today. Nevertheless,
this still has to be confirmed and tested more thoroughly.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 47

References

[RFC3315] "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", R. Droms
(Ed.), J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney, RFC 3315; July
2003.

[RFC2462] "IPv6 Stateless Address Autoconfiguration", S. Thomson, T. Narten, RFC
2462; December 1998.

[DHC] IETF Dynamic Host Configuration (DHC) WG charter,
http://www.ietf.org/html.charters/dhc-charter.html .

[RFC3736] "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6",
R. Droms, RFC 3736; April 2004.

[RFC2131] "Dynamic Host Configuration Protocol", R. Droms, RFC 2131; March 1997.
[RFC2132] "DHCP Options and BOOTP Vendor Extensions", S. Alexander, R. Droms,

RFC 2132; March 1997.
[RFC3319] "Dynamic Host Configuration Protocol (DHCPv6) Options for Session

Initiation Protocol (SIP) Servers", H. Schulzrinne, B. Volz, RFC 3319; July
2003.

[RFC3633] "IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
version 6", O. Troan, R. Droms, RFC 3633; December 2003.

[RFC3646] "DNS Configuration options for Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)", R. Droms (Ed.), RFC 3646; December 2003.

[RFC3898] "Network Information Service (NIS) Configuration Options for Dynamic
Host Configuration Protocol for IPv6 (DHCPv6)", V. Kalusivalingam, RFC
3898; October 2004.

[SNTP] "Simple Network Time Protocol Configuration Option for DHCPv6", A.K.
Vijayabhaskar, Internet Draft, draft-ietf-dhc-dhcpv6-opt-sntp-00.txt;
November 2003.

[LIFETIME] "Information Refresh Time Option for DHCPv6", S. Venaas, T. Chown, B.
Volz, Internet Draft, draft-ietf-dhc-lifetime-02.txt; September 2004.

[CLIENTFQDN] "The DHCPv6 Client FQDN Option", B. Volz, Internet Draft, draft-ietf-dhc-
dhcpv6-fqdn-00.txt; September 2004.

 [DSTM] "DSTM Options for DHCP", B. Volz, J. Bound, R. Droms, T. Lemon,
Internet Draft (expired), draft-ietf-dhc-dhcpv6-opt-dstm-01.txt; April 2002.

[DSTMPORT] "DSTM Port Options for DHCP", M.-K. Shin, Internet Draft (expired), draft-
ietf-dhc-dhcpv6-opt-dstm-ports-01.txt; June 2002.

[CLIPREF] "Client Preferred Prefix option for DHCPv6", A.K. Vijayabhaskar, Internet
Draft (expired), draft-ietf-dhc-dhcpv6-opt-cliprefprefix-01.txt; March 2003.

[LOADB] "Load Balancing for DHCPv6", B. Volz, Internet Draft (expired), draft-ietf-
dhc-dhcpv6-loadb-02.txt; August 2002.

[RFC3041] "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", T.
Narten, R. Draves, RFC 3041; January 2001.

IST-2001-32603
Deliverable D3.2.3v2 DHCPv6 implementation and test report

version 3

 48

[RFC3118] "Authentication for DHCP Messages", R. Droms (Ed.), W. Arbaugh (Ed.),
RFC 3118; June 2001.

[D3.2.3v1] 6NET Deliverable 3.2.3: "DHCPv6 implementation and test report" (first
version); January 2002.

[Dibbler] Mrugalski T., “Dibbler – a portable DHCPv6 User's guide version 0.2.1-
RC1”, http://www.klub.com.pl/dhcpv6, October 2004.

[Ethereal] Combs G., Ethereal 0.10.5, http://www.ethereal.com/introduction.html, 2004.

